Tetrahedron Letters Vol. 21, pp 3625 - 3626 © Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/0908-3625\$02.00/0

ALKYLATION OF TRICARBONYLCYCLOHEXADIENYLIRON SALTS (1) WITH LITHIUM ALKYLS

B.M. Ratnayake Bandara, Arthur J. Birch and Thong-Chak Khor

Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia.

SUMMARY: The salts <u>1</u> (I=H, OMe, Me) react with RLi(R=Me, n-Bu, i-Pr, t-Bu) in CH₂Cl₂ at low temperature to give <u>2</u> and <u>3</u> in excellent yields. Nucleophilic addition at the 1-position of 1 (I=OMe) has been observed for the first time.

Alkylation of examples of the title cations <u>1</u> has been reported with dialkylzinc,¹ dialkylcadmium^{1,2} and organocuprates.^{3,4} Alkylation with the more readily available lithium alkyls (usually the starting material for the other organometallic reagents) in ethereal solvents leads to extensive decomposition or poor yields^{4,5} (e.g. methyl lithium, 39%;⁵ t-butyl lithium, 9%⁴).

We have re-examined the reaction of $\underline{1}$ (Y=H, Me, OMe) with lithium alkyls and have found that the use of methylene chloride as solvent gives excellent yields of $\underline{2}$ and $\underline{3}$ (see Table). In conjunction with removal of the metal, with or without initial isomerisation of the complex, the reaction leads to potential availability of a wide range of specifically substituted cyclohexa-1,3-dienes.

With $\underline{1}$ (Y=Me), the addition occurred predominantly at the 5-position, in agreement with previous studies¹⁻⁴ using other alkylating reagents. However, the anticipated completely regio-selective character of $\underline{1}$ (Y=OMe)¹⁻⁴ was not observed with RLi (R=n-Bu, i-Pr, t-Bu) where both $\underline{2}$ and $\underline{3}$ were formed. These are the first examples of nucleophilic addition at the 1-position of $\underline{1}$ (Y=OMe). With t-BuLi, nucleophilic addition to the 1-position of $\underline{1}$ (Y=OMe) is as high as 40%. This may be due to the high reactivities of lithium alkyls in nucleophilic additions relative to organo-zinc, -cadmium or -cuprate reagents. The isomer ratio ($\underline{2}$ and $\underline{3}$) in the alkylation of $\underline{1}$ (Y=OMe) is consistent with this factor. The same trend is not found in the case of $\underline{1}$ (Y=Me). This may be explicable in terms of the interplay between the reactivities of the incoming nucleophiles and that of the salts which are in the order $\underline{1}$ (Y=OMe) > $\underline{1}$ (Y=OMe).

	TABLE*			
	MeLi	n-BuLi	<u>i-PrLi</u>	<u>t-BuLi</u>
<u>1</u> (Y = H)	87% (80%) ^a	90% (90%) ^b	77% (52%) ^b	79% (69%) ^{a,d}
$\underline{1}$ (Y = Me)	96% (60%) ^a	96% (81%) ^b	94% (55%) ^b	87% (71%) ²
	(75:25) ^e	(70:30) ^e	(90:10) ^e	(80:20) ^e
$\underline{1}$ (Y = OMe)	94% (50%) ^a	84% (58%) ^b	94% (10%) ^C	87% ^f
	(100:0) ^e	(90:10) ^e	(90:10) ^e	(60:40) ^e

* Isolated yields, not optimised. Spectral data are identical with those previously reported.¹⁻⁴

^a LiRCuSPh; ^b R₂Cd; ^c R₂Zn; the best yields selected from previous work.¹⁻⁴

^d Contains a very small amount of an unidentified impurity.

^e The ratio of 2 : 3; estimated from nmr spectra.

f Satisfactory ir, mass and nmr spectra obtained.

The scope of this reaction in relation to other transition metal stabilised cations is being investigated in this laboratory.

General Procedure:

Alkyl lithium $(1-1.2 \text{ eq.})^7$ was added dropwise to a stirred suspension of <u>1</u> (1 eq.) in dry CH_2Cl_2 (10 ml/mmole) under nitrogen at -78°. When the yellow suspension turned to a clear or turbid solution (usually within 5-45 min), a solution of 10% aq.HCl (<u>ca.</u> 10 ml) was added to destroy any excess lithium alkyl. Petroleum ether (2 x vol of CH_2Cl_2) was added and the organic layer washed with water, dried (MgSO₄) and concentrated. The crude product was purified by eluting through a short column of basic alumina (grade 4) with petroleum ether. The yields of isolated products are given in the Table.

References and Notes

- 1. A.J. Birch and A.J. Pearson, <u>Tetrahedron Letters</u>, 1975, 2379.
- 2. A.J. Birch and A.J. Pearson, J.C.S. Perkin I, 1976, 954.
- 3. A.J. Pearson, Aust. J. Chem., 1976, 29, 1101.
- 4. A.J. Pearson, Aust. J. Chem., 1977, 30, 345.
- 5. A.J. Birch, P.E. Cross, J. Lewis, D.A. White and S.B. Wild, J.C.S. (A), 1968, 345.
- 6. 1 (Y = Me) reacts faster (ca. 5 min) with RLi than <u>1</u> (Y = OMe) (ca. 30-45 min).
- 7. In pentane or hexane; except for MeLi (ether).

(Received in UK 26 June 1980)