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Alkylation of examples of the title cations 1 has been reported with dia1kylzinc.l - 
112 

~a~ylca~~ and organocuprates. 
3,4 Alkylation with the more readily available 

lithium alkyls [usually the starting material for the other organometallic reagents) in 

ethereal solvents leads to extennive decomposition or poor yields 4'5 (e.g. methyl lithium, 

39%? t-butyl lithium, 9%4). 

We have re-examined the reaction of 1; (Y=H, Me, OMe) with lithium alkyls and have found 

that the use of ntotbylene chloride as solvent gives exaellent yields of 2 and 2 (see Table). 

In conjunction with removal of the ntetal, with or without initial isomerisation of the 

con~plex. the reaction leads to potential availability of a wide range of specifically 

substituted cyclahexa-1,3-dienes. 

L = Fe(C013 

With & (Y&e>, the addition occurred pxedominantly at the S-position, in agreement with 

previous studies 
l-4 

using other alkp'lating reagents. However. the anticipated completely 

mgio-selective character of 1 (YPONe)l-Q w&s not obscsrm?d wit% RLi (R-n-Su, i-Br, t-Bu) 

where both 2 an8 3. were formed. These are the first examples of nucleophilic addition at 

the l-position of 1 (Y=OMe). With t-BuLi, nucleophilic addition to the l-position of 

& (Y=OMe) is as high as 40%. This may be due to the high reactivities of lithium alkyls 

in nucleophilic eations relative to organo-zinc, -cadmium or -cttprate reagents. The 

isomer ratio (Z_ and 3-1 in ths alkylation of & (Y=cJ&&) is consistent with this factor. The 

same trend is not found in the case of 1 &%I. This may be explicable in terms of the 

interplay between the reactivities of the incoming nucleophiles and that of the salts which 

are in the order J._ (Y=Me) > 1 (Y=CMe).6 
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MeLi 

1 (Y = I-I) 87% (80!Qa 

1 (Y = Me) 96% (60%)a 

(75:25)e 

1 (Y = OMe) 94% (50%)a - 
(1OO:O)e 

* Isolated yields, not optimised. 

previously reported.1-4 

TABLE* 

n-BuLi 

90% (90%)b 

96% (81%)b 

(70;30)e 

84% E8%)b 

(90:10)e 

Spectral data 

i-PrLi t-BuLi 

77% (52%jb 79% (69%jard 

94% (55%Jb 87% (71%ja 

(9c:lwe (80~20)~ 

94% (lo%)c 87%f 
(9c:lo)e (60:40)o 

are identical with those 

a LiRCuSPh; b R2Cd; c RpZn; the best yields selected from previous work. 
l-4 

d 
Contains a very small amount of an unidentified impurity. 

e The ratio of 2 :J; - estimated from nmr spectra. 

f Satisfactory ir. mass and nnu spectra obtained. 

- 

The scope of this reaction in relation to other transition metal stabilised cations 

is being investigated in this laboratory, 

General Procedure: 

Alkyl lithium (l-l.2 eq.j7 was added dropwise to a stirred suspension of 1. (1 eq.) in 

dry CH2C12 (10 ml/mmole) under nitrogen at -7BO. When the yellow suspension turned to a 

clear or turbid solution (usually within 5-45 min), a solution of 10% aq.HCl (ca. 10 ml) - 

was added to destroy any excess lithium alkyl. Petroleum ether (2 x vol of CH2Cl2) was 

added and the organic layer washed with water, dried (MgS04) and concentrated. The crude 

product was purified by eluting through a short column of basic alumina (grade 4) with 

petrcleum ether. The yields of isclated products are given in the Table. 
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6. 1 [Y - Me) reacts faster (ca. 5 min) with F&i than 1. (Y = OMe) {ca_ 30-45 min). 

7. In pentane or hexane; except for MeLi (ether). 

(ReceivaB in UK 26 June 1960) 


